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Letters 
Supporting evidence for the 
coincidence-ledge aspects of the CLD 
model of grain boundaries 

In the coincidence-ledge aspects of the coincid- 
ence-ledge-dislocation (CLD) model [1, 2] 
one-layer unrelaxed hard-sphere modelling was 
used to show that the structure of high-angle tilt 
boundaries could be described in terms of simple 
structural units. In certain symmetric tilt 
coincidence boundaries, termed ideal coincidence 
boundaries, the ledge length is uniform so that 
the structure is perfectly periodic, and the 
shared atoms in the boundary at the ends of the 
units are exactly coincident. In these boundaries 
the structural units are defined by the ledges 
which enclose polygonal units of misfit. Between 
the misorientations at which the ideal coincidence 
boundaries occur, the boundary structure is 
made up of mixtures of units characteristic of 
adjoining ideal coincidence boundaries, or in 
certain misorientation ranges, of units character- 
istic of  the crystal lattice. In these non-ideal 
symmetric tilt coincidence boundaries, the repeat 
unit is longer, and only boundary sites at the 
ends of the longer repeat units can be exactly 
coincident. The shared atoms in the interior of 
the repeat unit are in a compromise position 
between two nearly coincident lattice sites, that 
is, at "boundary coincidence" or near-coincid- 
ence sites. 

It is the purpose of this letter to point out that 
the recent calculations by Hasson, Guillot, 
Baroux, and Goux (HGBG) [3] of the minimum 
energy configurations of (100) symmetric tilt 
boundaries in copper and aluminium provide 
support for the coincidence-ledge aspects of the 
CLD model. Both the CLD model and the 
computer modelling study of HBGB chose 
(100) symmetric tilt boundaries in fcc metals as 
examples�9 However, HGBG defined their mis- 
orientation 0n as the angle between {100} 
planes rather than between {110} planes as was 
done in the CLD model for the definition of Oc. 
Therefore, the 0 values used in the two studies 
are complementary, i.e. 0r~ = 9 0 -  Oc. Also 
HBGB chose to draw in {100} planes to connect 
the lattice points in their figures, rather than the 
{110} planes used in the figures of the CLD 
model�9 The computed boundary structures shown 
by HBGB in their fig. 6 (reproduced here as 
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Figure 1 Computed  structures of  {100} foe symmetric tilt 
boundaries  f rom Fig. 6 o f  H G B G  13l with the {110} 
planes defining the ledges as in the C L D  model  drawn in 
the layer denoted  by the filled circles; (a) the 0s~ = 16~ ' 
(should be 16~ 0c = 73.7 ~ boundary,  {710} bound-  
ary plane,  ledge pat tern . . .  I 1211 . . .  ; (b) The 0ri = 
36~ ', 0c =; 53.1 ~ boundary,  (310} boundary  plane,  
ledge pat tern  . .  � 9  (c) The 0n = 53~ ', Oc = 
36.9 ~ boundary,  { 2 1 0 ) b o u n d a r y  plane,  ledge pat tern  
� 9  . . . .  

fig. 1) have OH = 16~ be 16~ 
36~ ', and 53008 ', in which the boundary planes 
are of the form {710}, {310}, and {210}, 
respectively. These misorientations and boundar- 
ies correspond to those in the CLD model at 
0c = 73.7, 53.1, and 36.9 ~ respectively. 

�9 1972 Chapman and Hall Ltd.  
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In treating the structure of  symmetric tilt 
boundaries, the CLD model developed a nota- 
tion for expressing the pattern of structural units 
in terms of the length of the ledge in each 
structural unit. For  example, in (100)  fcc 
symmetric tilt boundaries the notation 
� 9  4 4 4 4 . . .  indicates the ledge pattern in an 
ideal coincidence boundary at 0c = 28.1 ~ in 
which the ledge length is uniformly 4"a/2"(I 10). 
The step height at the end of the ledge is always 
l ' a /2" ( l10) .  In the notation . . .  ]44344] . . . .  
the vertical bars delineate the longer repeat unit 
in a non-ideal coincidence boundary lying 
between the . . .  3 3 3 3 . . .  0c = 36.9 ~ and the 
. . . .  4 4 4 4 . . .  0c = 28.1 ~ ideal coincidence 
boundaries. In boundaries with 0c > 53.1 o, the 
"1"  units in a pattern such as . . .  I121 t . . .  are 
aligned ledges of length l 'a /2"(110).  Since the 
step height is also l 'a /2"( l  10), these aligned "1" 
ledges form square units which are units of a 
{100} plane, i.e. of the lattice. The ledge 
structure proposed in the CLD model [1 ] for the 
0c = 73.7 ~ , 53.1 ~ , and 36.9 ~ (100 )  fcc sym- 
metric tilt boundaries were . . .  11211. . . ,  
. . .  2 2 2 2 . . . ,  and . . .  3333 . . . ,  respectively.* 
Figs. la, b, and c of this paper show figs. 6a, b, 
and c of  H G B G  with the (110 )  planes (neces- 
sarily somewhat bent in the relaxed Structures) 
drawn in one layer as used in the CLD model to 
define the ledges. As can be seen, the ledge 
pattern and the structural units in the computed 
structures are those proposed in the CLD model. 
Moreover, the relaxations f rom the atom 
positions in the CLD model are those one might 
intuitively expect. For  example, in the 0N = 
53~ ` (0c = 36.9 ~ ) . . .  3 3 3 3 . . .  boundary, the 
unrelaxed hard-sphere model shows that on one 
side of the coincidence atom the bond length 
across the boundary is too short (compression), 
and on the other side the bond length is too long 
(dilation). The calculations of  H G B G  show that 
the atoms in the region of compression shift out- 
ward away from the boundary and those in the 
region of dilation relax inward. 

The relaxed structures show a series of shared 
atoms in the boundaries where either exact co- 
incidence sites (ends of  repeat units), or near- 
coincidence sites (interior of the longer repeat 
unit in the 0c = 16~ ' boundary) are expected. 

Initially H G B G  [3] found, where they checked, 
that assuming T =/- 0~ increased the computed 
enthalpy of the boundary, that is the shared 
sites at the ends of the repeat units were exact 
coincidence sites in the minimum energy 
configurations. However, they have found 
recently [4] that by varying T very slowly, the 
enthalpy could be reduced slightly by choosing T 
near 0.1 a0 (a0 = the lattice parameter). This 
refinement in the calculation does not alter the 
structural results, and changes the computed 
enthalpy by less than 5 ~ .  Thus it appears that in 
relaxed structures shared sites at the boundary 
will be found where expected on the basis of  the 
CLD model, but that these shared sites will all 
be near-coincidence sites. 

In fig. 1 the {t 10 } planes defining the ledges 
at the boundary were drawn in only one layer in 
each boundary to avoid cluttering the figure. It  
can be determined easily by drawing the {110} 
planes in the second layer (denoted by crosses) 
that it is very nearly identical to the first layer, 
but displaced along the boundary. This is as 
expected, since {100} layers are displaced by 
a/2"(100) with respect to each other. 

In developing the coincidence-ledge aspects of 
the CLD model, even though some suggestions 
were made as to how relaxation in the immediate 
vicinity of the boundary might take place, e.g. 
in the 0c = 28.1 ~ boundary by removal of one 
of a paiI of overlapping atoms to give an 
alternating ledge structure, no attempt was made 
to predict in detail the way in which the structure 
in a real boundary might relax. It  was recognized 
at the time that this would require a more 
sophisticated treatment such as that of HGBG.  In 
spite of  the apparent limitations of  one-layer 
unrelaxed hard-sphere modelling there is sur- 
prisingly close agreement between the structures 
presented by H G B G  and those proposed in the 
CLD model. This agreement, however, must 
obviously be treated cautiously. H G B G  present 
structures for only three (100)  boundaries in two 
fcc metals. These three boundaries, although 
they include both. ideal and non-ideal coincid- 
ence misorientations, are all on one side of the 
(100 )  tilt spectrum 36.9 ~ < 0e < 73.7 ~ where 
the ledge lengths are short. This is where the 
unrelaxed hard-sphere model would be expected 

*In fig. In of [1 ] the ledge notation and the misorientations are correctly shown. However, in making up the composite 
figure, the structural models for the repeat units in the Oc = 67.4 ~ . . .121l . . .  and the Oc = 73.7 ~ . . . I121[ . . .  
boundaries were interchanged, as a count of the ledge pattern in the models will quickly show. 
tT is the smallest vector joining two homologous sites. When T ~ 0, sites that would normally coincide exactly are 
translated with respect to each other by T. 
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to give the best results. In (100)  fcc symmetric 
tilt boundaries when 8c < 18.9 ~ ledge lengths 
are long (~-'- 6"a/2-(1 10)) and extensive overlap 
of  atoms in the long ledges in the unrelaxed 
model occurs. This suggests that in real bound- 
aries coalescence of the ledges would occur to 
give a structure of isolated cores separated by 
regions of distorted single crystal. Weins, Gleiter, 
and Chalmers [5] have also computer modelled 
(100)  symmetric tilt boundaries. Although most 
of their boundary structures agree with the CLD 
model, to the same degree as those of HGBG,  
not all do. The elastic anisotropy of cubic 
metals indicates that central force potentials, 
such as the Morse potential, are only approxi- 
mate representations of metallic bonding. There 
is also a problem in recognizing absolute energy 
minima in the calculations, and entropy 
considerations have not yet been included. 

Even with these reservations, the results of 
H G B G  support the basic idea of the CLD model 
that grain boundaries are made up of a limited 
number o f  small structural units that are: 
(i) characteristic of certain short period special 
boundaries*, or characteristic of the lattice t ; (ii) 
defined by ledges; (iii) bounded by shared sites; 
(iv) mixed in crystallographicallyappropriate 
patterns to form the longer repeat units of more 
complex boundaries lying between, or away 
from, the misorientations and/or inclinations at 
which the special boundaries occur. In relaxed 
structures the ledges may be slightly bent, the 
shared sites may be all near-coincidence sites and 
there may be extra or missing atoms in a unit. 
These relaxational features appear to modify, 
but not to basically alter, the structural features 
proposed in the CLD model. Chalmers and 
Gleiter [7] in a recent paper which retains the 
other features of the CLD model, suggested that 
translational relaxation will eliminate shared 
sites in the boundary. The results of H G B G  
indicate that this is not necessarily so. 

The feature that the longer repeat units in 
boundaries away from short period boundaries 
are formed by mixing shorter, more-basic units 
characteristic of the neighbouring short period 
boundaries, or of the lattice, is important. This 
reduces the number of structural units needed to 
specify the boundary, and allows a continuous 
transition in structure and properties [1, 2] as 

the misorientation and/or inclination of the 
boundary changes. 

Finally, it is of interest to note that a careful 
reading of the transition zone model of  
Hargreaves and Hills [8] reveals that it contains 
a number of features of the CLD model. They 
noted the existence of simple repeating structural 
units bounded by coincidence sites at special 
misorientations. If  their [001 ] asymmetric tilt 
boundaries are viewed as [001 ] fcc boundaries 
(in one (001) layer, [100]se = [1 10]fee), these 
misorientations are 0c = 53.1~ 22.6 ~ 16.3 ~ . . .  
to smaller 0c, as given by their first formula. 
They also observed that between these coincid- 
ence misorientations, there would be "transition 
patterns" at a second series of misorientations 
given by a more general formula. Quite under- 
standably in view of its time, their treatment over- 
looked certain points. Restriction of n to odd 
numbers in their first formula excludes certain 
of the ideal coincidence misorientations which 
are given by substituting even n in that 
formula. In addition they examined in detail 
only one of the repeat units, so that their concept 
of the structure of the repeat units and the 
transition in structure from one misorientation 
to another remained undeveloped, i.e. theydidnot  
recognize that the repeat patterns were made up 
of small basic units, which are mixed to effect the 
transition in structure. Also their relaxed zones 
on either side of the boundary are very wide in 
terms of today's thinking. Nevertheless their 
model must be counted as the first coincidence- 
structural unit model for grain boundaries. 
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Assignment of axes to arsenic and other 
rhombohedral crystals of the A7 structure 
type 

Over the last decade, there has been much interest 
in the physical properties of the group V 
elements (arsenic, antimony and bismuth) and 
the literature abounds with publications on the 
subject. Recently, AkgSz and Saunders [1 ] have 
raised the question of the necessity for assigning 
a unique orthogonal axial set when describing 
such physical properties. Previous workers, 
Hatori [2], Kosevich [3], and Shetty and 
Taylor [4] were criticized for using an erroneous 
definition of  a right-handed, orthogonal axial 
set which, it was claimed, results in incorrect 
assignment of the basic crystallographic direc- 
tions. It is incumbent upon us to rebut or accept 
this criticism. The defence of our position is 
based on a fresh determination of the orientation 
of  etch pits on cleaved complementary surfaces 
of  an arsenic crystal. In order to clarify the 
point for future workers in the field, we present 
for the first time a concise and complete des- 
cription of the crystallography with reference to 
three axial systems commonly used by previous 
workers. Our experimental work refers specific- 
ally to arsenic but the treatment and conclusions 
have direct applicability to other materials with 
the rhombohedral point group 3m. 

The crystallographic data for arsenic are given 
in Table I. The original description of the struc- 
ture by Bradley [5] was ret~erred to a face- 
centred rhombohedral cell (fcr). The angles 
calculated by Bacon, Heckscher, and Crocker 
[6] also refer to this cell. The most recent and 
accurate determination of the crystal structure by 
Schiferl and Barrett [7] is referred to a primitive 
rhombohedral cell (rh) and a hexagonal cell 
(hex). The point group symmetry 3 2/m and 
space group symmetry R3m remain unchanged 
in each description. An infrequently used body- 
centred rhombohedral cell [8] related to the 
primitive rhombohedral cell by the transform- 
ation 0 1 1/1 01/1 1 0 is omitted from Table I. 

Fig. 1 is a projection of the arsenic structure on 

�9 1972 Chapman and Hall Ltd. 

the (11 1)rh plane. The three cells are shown 
together with pertinent crystallographic data. 
The origin lies in the paper and the positive 
directions of the three primitive rhombohedral 
axes, a~, a2 and aa are upwards. It must be 
stressed that there are three possible ways of 
assigning a~, a2 and as in that any one of these 
directions can be designated ax but having done 
that, the choice for ap and aa is fixed. (The 
operation of the centre of symmetry results in 
another option which is considered later.) This 
set of rhombohedral axes or any one of the 
related axial sets is sufficient to set up a Cartesian 
axial system to describe any tensor property of 
materials crystallizing with the A7 structure 

46  

0- 

ETCH PIT m ,% -ETCH PIT 
ON Ira) ~ I // ,(~ ON (i~i} 

\ /  f / \ \  

"EXAOgAL "~'0f ~'"~0~. 
CELL 

IO IOhe  K ~ J 

Figure 1 The rhombohedral arsenic structure projected 
onto (1 1 1)rh. The atoms (open circles) are labelled with 
the values of their parameters (numerically x = z for 
rhombohedral or hexagonal cells) referred to the origin 
(small square) in the centre; crosses (+) mark the lengths 
assigned to x and y in the Cartesian axial system. 
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